Repli-Cast™ is a high-quality, all-purpose casting and pressing investment that works well with both standard and rapid burnout. You have more command with Repli-Cast™ due to the wider range of expansion controls. Repli-Cast™ is a smooth pouring material that gives great surfaces and divests easily.

### Two-Minute Mix Time

<table>
<thead>
<tr>
<th>ALLOY</th>
<th>100%</th>
<th>90%</th>
<th>80%</th>
<th>75%</th>
<th>70%</th>
<th>60%</th>
<th>50%</th>
<th>40%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LIQUID CONCENTRATION</td>
<td>LIQUID ML</td>
<td>WATER ML</td>
<td>LIQUID ML</td>
<td>WATER ML</td>
<td>LIQUID ML</td>
<td>WATER ML</td>
<td>LIQUID ML</td>
</tr>
<tr>
<td>CERAMIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90%</td>
<td>80%</td>
<td>70%</td>
<td>60%</td>
<td>50%</td>
<td>40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.0</td>
<td>18.0</td>
<td>15.0</td>
<td>13.0</td>
<td>11.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>4.0</td>
<td>5.5</td>
<td>7.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22.0</td>
<td>20.0</td>
<td>18.0</td>
<td>16.5</td>
<td>15.0</td>
<td>13.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>2.0</td>
<td>4.0</td>
<td>5.5</td>
<td>7.0</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Physical Properties

- **Liquid / Powder Ratio**: 22 ML / 100 G
- **Working Time**: 6 - 8 Minutes
- **Setting Expansion**: 1.6%
- **Thermal Expansion**: 0.65%
- **Compressive Strength**: 1,350 PSI (9.2 MPa)

### Mixing

- Prepare liquid at suggested concentration following the mixing chart listed above or on the back of each envelope. Distilled water is recommended for dilution.
- Rinse bowl out with water and shake out excess. Always use separate mixing bowls for phosphate and gypsum investments.
- Add measured liquid to mixing bowl. Incorporate powder by hand spatulation for 10 -15 seconds.
- Mechanical mix under vacuum on slow speed (350-600 RPM) for 2 minutes (120 seconds). Higher RPM mixers may require decreased mix time (90 seconds).

---

**For optimal results, store and use powder and liquid at room temperature—between 20° C / 68° F and 25° C / 78° F.**

---

BENCHSET
- Benchset for 15 minutes.
- Rinse the hot mold under tap water and trim glaze off the top of the mold before burnout.
- For optimal results, place in a preheated oven within 30 minutes of investing.

Molds allowed to set more than 12 hours should be re-wet prior to burnout by soaking in water for 1-3 minutes.

BURNOUT

Rapid Technique (Pre Heated Oven)
- Place Molds in preheated oven at alloy manufacturer’s recommended temperature—up to 925° C / 1,700° F*. For higher temperatures place molds in oven at 925° C / 1,700° F then heat to final temperature at 14° - 20° C / 25° - 40° F per minute.
- Heat soak at final temperature for 30 minutes. Add 10 minutes per each additional mold.

*Maximum preheat entry temperature for the metal ring is 870° C / 1,600° F.

Standard Technique (Cold Oven)
- Place molds in oven at room temperature. Heat to desired temperature at 14° - 20° C / 25° - 40° F per minute.
- Heat soak at final temperature for 30 minutes. Add 10 minutes per each additional mold.

CASTING (ALLOY)
- Upon removal from the oven, immediately cast according to the alloy manufacturer’s instructions.

PRESSING (PRESSABLE CERAMICS)
- Press according to ceramic manufacturer’s recommendations.
- Use 200 gram mold for restorations requiring two ingots.

DIVESTING
- Allow metal castings and ceramic pressings to cool completely prior to divesting. NOTE:
  - For small volume mixes (less than 100 grams) decreasing the liquid/powder ratio approximately 2 mL/100 gram will increase expansion and improve surface quality.
  - For tight fits—increase liquid concentration or increase mix temperature; if using metal rings, you may also use a double liner.
  - For loose fits—decrease liquid concentration or decrease mix temperature (refer to Expansion Ratio Chart).
  - For large molds containing complex restorations or plastic sprues, runner bars or copings, the standard technique described above or a two-stage burnout technique is recommended.